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Abstract
It has been shown in the past that the classical Laplace–Runge–Lenz vector
emerges naturally in the computation of the post-Newtonian Lorentz boost in
2-body electrical or gravitational systems. This procedure is extended here to
many-body systems. A new N-body vector observable of the Runge–Lenz type
is found which is an integral of motion for non-trivial families of solutions.
Conditions for its integrability are discussed with explicit examples. The
relation of this vector with the post-Newtonian centre-of-mass is also briefly
discussed.

PACS numbers: 03.50.−z, 04.25.Nx, 45.50.−j, 45.50.Pk, 95.10.Ce

1. Introduction

The existence of the so-called Laplace–Runge–Lenz vector1 as an internal2 integral of the
motion in Newtonian 2-body Kepler/Coulomb systems has been well known for more than
two centuries [1]. With the potential U(r) = κ/r and the internal angular momentum
�� = �r × �p, a common definition of the Runge–Lenz vector is

�K = 1

μ
�p × �� +

κ

r
�r, (1)

with μ being the reduced mass, �r the relative coordinate and �p the corresponding momentum.
Knowledge of the Runge–Lenz vector amounts to having a full solution for the configuration
of the system: in classical (non-quantum) systems �K is perpendicular to ��, directed along
the major axis of the (reduced) particle’s trajectory and its magnitude is proportional to the

1 According to Goldstein’s historical review [1], this vector should actually be named after the predecessors of Runge
and Lenz, but for the sake of simplicity the common name will be used in the following.
2 The term internal refers here and in the following to any dynamical quantity which depends only on the relative
coordinates of the particles and is invariant under uniform global translations.
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eccentricity of the curve; in simple quantum systems the Runge–Lenz vector provides a very
elegant means for obtaining the full quantum picture of the system (as in the case of the
hydrogen atom).

It is well known that the Runge–Lenz vector (1) generates, together with the internal
angular momentum ��, SO(4) or SO(3, 1) symmetry groups which contain the internal
rotational symmetry as a subgroup. These symmetries have been shown to exist, by general
arguments, for general rotationally symmetric systems with arbitrary number of degrees of
freedom [2–4]. Thus, the internal dynamics of rotationally symmetric systems is governed
not only by the rotational symmetry but rather by the larger symmetry generated together by
(at least) both the internal angular momentum and the Runge–Lenz vector.

In practice, however, we know how to construct Runge–Lenz vectors only for 2-body
systems. This presents the challenge of generalizing the Runge–Lenz symmetry also for
systems with more than two particles. The search for Runge–Lenz-like vectors in many-body
systems then becomes part of the search for integrals of the motion (other than energy, linear
and angular momenta) in these systems, which has been unsuccessful in most cases. Of
course, Runge–Lenz-like vectors may be found in interaction-free systems. There may also
exist examples such as the exactly soluble model of D and R M Lynden-Bell [5] in which
they explicitly build a Runge–Lenz vector (actually, N different vectors, corresponding to the
N particles), but that is not the case in realistic systems. Two centuries of study of celestial
mechanics [6–8, 10, 11] led to colloquial agreement that the only simple (i.e. analytically
expressed in terms of the dynamical variables of the particles) observables are the global
quantities of total energy, total momentum and total angular momentum (see also Gutzwiller
[12]). In particular cases, such as circular restricted 3-body systems3, there is also a scalar
integral of the motion known as the Jacobi integral [7, 8, 10] which is a kind of energy integral.
However, in general 3-body systems the theorem of Bruns [7] holds which states that all the
algebraic integrals of the motion that exist are necessarily algebraic functions of the energy
and total linear and angular momenta. In particular, nowhere is a vector constant of the
motion like the Runge–Lenz vector found which corresponds—in a symmetric manner—to
all the particles.

So far, all this is well known. It may be therefore somewhat surprising that relativistic
considerations lead, in a very elegant way, to integrals of motion of Runge–Lenz type in many-
body non-relativistic systems, including celestial mechanics and Coulomb interactions. It has
been shown by Dahl [13], apparently unnoticed by the physics community, that the classical
Runge–Lenz vector naturally appears—as an integral of motion—in the computation of the
Lorentz boost in the post-Newtonian approximation of an electromagnetic or gravitational 2-
body system. Dahl’s procedure was applied so far only to 2-body systems for which, as Dahl
has shown (see also [14]), it leads to an internal constant vector which is proportional to the
classical Runge–Lenz vector (1). No attempt has been made, to the author’s best knowledge,
to apply it to larger systems. Therefore, if Dahl’s procedure works also for N(N � 3)-body
systems, then a new constant of the motion, unrealized so far, is obtained.

Dahl’s procedure consists in splitting the post-Newtonian Lorentz boost in the centre-of-
mass (CM) frame into a sum of two terms, one of which contains a vector �Ro which formally
looks like the Newtonian centre-of-mass (see equation (2)). This vector, which in the post-
Newtonian approximation is not a constant of the motion, is separated from the boost in such
a way that it carries all the translational properties of the boost, so that the remainder is an
internal quantity. Since the non-constancy of �Ro is purely a relativistic effect, its time-varying

3 Restricted 3-body systems are, in celestial mechanics, systems in which two bodies, known as ‘primaries’, are
much more massive than the third, so their motion is assumed to be on a 2-body unperturbed closed orbit while the
third body moves in the common gravitational field of the primaries [6–8].
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part is a vector observable of order 1/c2. This time-varying part is also internal, since the
translational properties of �Ro are all contained in an arbitrary constant of integration. In this
way, an internal vector is separated from the boost which is an integral of the motion yet of
order 1/c2.

Appreciating the fact that more than two centuries of research yielded a null result
regarding the existence of extra algebraically simple integrals of motion in the general N-
body Kepler/Coulomb problem, Dahl’s procedure is not expected to be applicable to all such
systems. However, there may exist non-trivial families of solutions for which the procedure
works, and an extra vector integral of the motion does exist.

This is indeed what we show in the following: applying Dahl’s procedure to
Kepler/Coulomb systems with arbitrary number of bodies an explicit expression for such
a vector is derived, and the conditions for it being an integral of motion are found. It is
an N-body Runge–Lenz-like vector, with a kinetic part that is first order in the coordinates
and second order in the velocities or momenta, just like the classical Runge–Lenz vector
(1). It is demonstrated that it is indeed a non-trivial integral for N-body collinear central
configurations (in which the ratios between interparticle distances remain unchanged) or for
3-body triangular central configurations, and it is explicitly computed in these cases. Also
discussed are the integrability conditions for general 3-body systems. The relation of this
vector with the post-Newtonian centre-of-mass is also briefly discussed.

2. Dahl’s procedure in many-body systems

Consider an N-body system with masses {ma}, possible electrical charges {ea}, coordinates
{�xa} and linear momenta { �pa} (a = 1, . . . , N), with total Newtonian mass Mo = ∑

a ma and
total linear momentum �P = ∑

a �pa (in the post-Newtonian approximation).
As outlined in the introduction, Dahl’s procedure starts with isolating, in the CM reference

frame, a term containing the Newtonian CM from the post-Newtonian Lorentz boost. The
Newtonian CM is

�Ro = 1

Mo

∑
a

ma�xa, (2)

and the CM frame is defined by �P = 0 without fixing the origin. The post-Newtonian Lorentz
boost is [15]

�N =
∑

a

(
ma +

mav
2
a

2c2
+

∑
b �=a

κab

2rabc2

)
�xa, (3)

with κab = eaeb or κab = −Gmamb for electromagnetic or gravitational systems, respectively.
Then, with �ra = �xa − �Ro being the particles’ coordinates relative to �Ro and �rab = �ra − �rb the
relative coordinates between particles, the boost (3) becomes

�N = MRo +
1

2c2

∑
a

(
mav

2
a +

∑
b �=a

κab

rab

)
�ra, (4)

where

M =
∑

a

(
ma +

mav
2
a

2c2

)
+

∑
(a,b)

κab

rabc2
(5)

is the invariant total relativistic mass in the post-Newtonian approximation. (a, b) implies
summation over all pairs of different particles. Since the sum in equation (4) is an internal
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quantity, all the translational properties of �N (i.e. its behaviour under uniform spatial
translations) are contained in �Ro.

The next step is to compute the time-varying part of �Ro which is of order 1/c2. Substituting
the post-Newtonian velocities [15]

�va = �pa

ma

− p2
a

2c2m3
a

�pa −
∑
b �=a

κab

2mambc2rab

[
�pb +

( �pb · �rab)

r2
ab

�rab + αmb

( �pb

mb

− �pa

ma

)]
(6)

with α = 0 or α = 6 for the electromagnetic or gravitational case, respectively, the time
derivative of �Ro is found to be, after some algebra,

d �Ro

dt
=

∑
a

ma

Mo

�va = 1

Mo

∑
a

{
�pa − p2

a

2c2m2
a

�pa

−
∑
b �=a

κab

2rabmbc2

[
�pb +

( �pb · �rab)

r2
ab

�rab + αmb

( �pb

mb

− �pa

ma

)]}

= − 1

2c2Mo

∑
a

{
mav

2
a�va +

∑
b �=a

κab

rab

[
�vb +

(�vb · �rab)

r2
ab

�rab

]}

= − 1

2c2Mo

d

dt

[∑
a

ma

(
�ra · �va

)
�va

]

+
1

2c2Mo

∑
a

{
ma

[(
�ra · d�va

dt

)
�va + (�ra · �va)

d�va

dt

]
−

∑
b �=a

κab

rab

[
�vb +

(�vb · �rab)

r2
ab

�rab

]}
.

(7)

We note that the α-containing term in the second row, which indicates the difference between
the gravitational and electromagnetic interactions, disappears in the total sum, and in the
following both interactions can be treated with the same expressions, as is the case in the
Newtonian limit.

Since the last row in (7) is already of order 1/c2, it suffices to substitute in it the Newtonian
equations of motion. With the single particle equation

ma

d�va

dt
=

∑
b �=a

κab

r3
ab

�rab (8)

we obtain
d

dt

[
2c2Mo

�Ro +
∑

a

ma(�ra · �va)�va

]

=
∑

a

∑
b �=a

κab

r3
ab

[(�ra · �rab)�va + (�ra · �va)�rab − r2
ab�vb − (�vb · �rab)�rab]

=
∑

a

∑
b �=a

κab

r3
ab

[(�rb · �rab)�va + (�rb · �va)�rab]. (9)

Therefore, if there exists a vector �W such that

d �W
dt

=
∑

a

∑
b �=a

κab

r3
ab

[(�rb · �rab)�va + (�rb · �va)�rab], (10)

then equation (9) may be integrated:

�Ro = �Xo − 1

2Moc2

[∑
a

ma(�ra · �va)�va − �W
]
, (11)

4



J. Phys. A: Math. Theor. 42 (2009) 375210 U Ben-Ya’acov

with �Xo being an arbitrary integration constant, so that the Lorentz boost (3) becomes

�N = M �Xo +
1

2c2

{ ∑
a

ma

[�v2
a�ra − (�ra · �va)�va

]
+

∑
(a,b)

κab

rab

(�ra + �rb) + �W
}

= M �Xo +
1

2c2

[ ∑
a

ma�va × (�ra × �va) +
∑
(a,b)

κab

rab

(�ra + �rb) + �W
]
. (12)

Defining the vector

�A ≡
∑

a

ma�va × (�ra × �va) +
∑
(a,b)

κab

rab

(�ra + �rb) + �W (13)

the boost may finally be brought to the generic form

�N = M �Xo +
1

2c2
�A. (14)

Since �N,M and �Xo are all constants, the vector �A is clearly an integral of the motion in
the non-relativistic limit. Its constancy may of course be verified now in a straightforward
computation using the Newtonian equations of motion (8) and equation (10). That �A is a vector
of the Laplace–Runge–Lenz type is evident from the fact that its kinetic part is composed of
terms which are of second order in the velocities and of first order in the coordinates, related
via the cross product.

Since �A is an internal vector it follows from equation (14) that all the translational
properties of �N are contained in �Xo. As is discussed in [14] for 2-body systems, it is �Xo—the
arbitrary constant of integration—that should be identified as the post-Newtonian centre-of-
mass, not the so-called centre-of-inertia

�RI ≡
�N

M
. (15)

The centre-of-inertia is therefore shifted from the centre-of-mass by a vector which is
determined by �A:

�RI = �Xo +
1

2Moc2
�A. (16)

M could be replaced by Mo in the second term because it is already of order 1/c2. �Xo and �RI

become identical only in the non-relativistic limit.

3. Integrability of �W

Our ultimate goal—finding a new, generally valid extra integral of motion in many-body
systems—would be achieved if we could integrate equation (10) for arbitrary systems. The
integrability considered here is regarding the possibility of �W being a relatively simple, analytic
function of the dynamic variables of the particles; as a general function of coordinates and
momenta, equation (10) is expected to be always integrable, though not necessarily in terms
of analytic functions.

Since the rhs of equation (10) is linear in the velocities, its integral (in this simple sense)
is expected to be in terms of the coordinates alone, �W = �W ({�ra}). Although such an integral
does not exist in the general case, there exist certain families of solutions, relatively simple
but nevertheless non-trivial, for which integration is possible. In particular, there exist those

5
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for which the rhs of equation (10) vanishes. Then we may assume that �W = 0 without loss of
generality, so that �A reduces to

�A =
∑

a

ma�va × (�ra × �va) +
∑
(a,b)

κab

rab

(�ra + �rb), (17)

still an integral of motion. Let us consider these solutions.
Using the identity

�ra =
∑

b

mb�rab

Mo

(18)

which is easily verified from equation (2), and defining the 3-body vectors

�wabc ≡ mcκab

r3
ab

�rab +
maκbc

r3
bc

�rbc +
mbκac

r3
ac

�rca (19)

it is possible to transform the rhs of equation (10) into a sum over triplets:

d �W
dt

= 1

Mo

∑
a

∑
(b,c) �=a

[(�rbc · �wabc)�va + (�rbc · �va) �wabc], (20)

where the sum over (b, c) is over all pairs that do not include the ath particle. The vectors
�wabc are symmetric under even permutations of the indices abc and anti-symmetric under odd
permutations. Evidently, if all the �wabc vanish, then �W = 0 and equation (17) is obtained.

The simplest case is that of 2-body systems. Dahl’s result [13] applies to all 2-body
systems, so we expect that equation (10) be integrable for all such systems. Indeed, since
the vectors �wabc correspond to triplets (three different particles) they must vanish identically
for 2-body systems. Thus, by the previous argument, �W = 0. The vector �A (17) is then an
integral of the motion which is proportional to the Runge–Lenz vector (1),

�A = m2 − m1

m1 + m2

[
μ�v × (�r × �v) +

κ

r
�r
]

= m2 − m1

m1 + m2

�K, (21)

which is Dahl’s result [13]. Clearly, �A vanishes when the masses are equal. This is to
be expected, since in this case, by symmetry, the centre-of-mass must be identical with the
geometrical centre, and no shift can occur between the centre-of-mass and the centre-of-inertia.

In many-body systems this simplicity is lost, and the integrability of equation (10) is not
ensured. We turn therefore to study the conditions under which �W is integrable.

4. Many-body collinear configurations

As a first step, let us consider an N-body system (N arbitrary) in which all the particles are
co-aligned, situated at any moment on one straight line (the orientation of the line may change
in time). Then it can be shown [7–10] that they must be situated with constant ratios between
their distances to the centre-of-mass: �ra(t) = ρa�r(t) for all a, where the ρa’s are constant
and �r(t) is a common vector. A theorem by Moulton [16] then states that for any ordering
of the particles (according to their masses) there is a unique set of coefficients {ρa} for which
the equations of motion are satisfied. Then also �rab(t) = ρab�r(t) with ρab = ρa − ρb, and
equation (10) yields

d �W
dt

=
∑

a

∑
b �=a

κabρaρbρab

|ρab|3r3
[r2�̇r + (rṙ)�r] = 0. (22)

The sum vanishes for each pair separately due to the anti-symmetry of ρab. Then again �W = 0
and the vector �A (equation (17)) is indeed an integral of the motion.

6
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For the explicit computation of �A we use the fact that as a consequence of the
particles’ equations of motion (8) the common vector �r(t) also satisfies an equation of the
Kepler/Coulomb type:

d2�r
dt2

= κo

r3
�r, (23)

where κo is a constant that satisfies for all a:∑
b �=a

κab

|ρab|3
ρab = maρaκo. (24)

From equation (24) we obtain further the relation∑
(a,b)

κab

|ρab| (ρa + ρb) =
∑
(a,b)

κab

|ρab|3 ρab

(
ρ2

a − ρ2
b

) =
∑

a

∑
b �=a

κab

|ρab|3 ρabρ
2
a

= κo

∑
a

maρ
3
a . (25)

As a solution of equation (23) the common vector �r(t) traverses a conic-section orbit.
Substituting �ra(t) = ρa�r(t) into equation (17) and using equation (25) we obtain

�A =
(∑

a

maρ
3
a

)
�Ko, (26)

where �Ko is the Runge–Lenz vector associated with the �r(t)-orbit:

�Ko = �̇r × (�r × �̇r) +
κo

r
�r. (27)

This result is clearly independent of the particular time dependence of the common vector
�r(t), except for the constant vector �Ko.

5. 3-body systems

The collinear configurations are part of what are known in celestial mechanics as central
configurations [7–10], referring to the configurations in which all the particles’ accelerations
are radial with respect to the centre-of-mass by the same ratio

d�va

dt
= ��ra, (28)

where � is a scalar (not necessarily constant) common to all the particles.
From their definition, all the vectors {�ra} are linearly dependent via the relation∑

a

ma�ra = 0. (29)

If they are otherwise linearly independent (which is the case for three bodies in a plane or four
bodies in 3D), then the central configuration condition (28) necessarily implies that �wabc = 0:
combining equations (8) and (28), the latter may be written as(

ma� −
∑
b �=a

κab

r3
ab

)
�ra +

∑
b �=a

κab

r3
ab

�rb = 0. (30)

Since relations (29) and (30) must be identical up to a multiplying factor, let us denote this
factor λa , so that the correspondence between the relations leads, for any a, to

ma� −
∑
b �=a

κab

r3
ab

= maλa (31a)

7
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κab

r3
ab

= mbλa (∀b �= a). (31b)

Substituting equation (31b) into (31a) leads to λa = ma�/Mo, and again in (31b) implies
κab

r3
ab

= mamb�

Mo

(∀a, b).

Hence for any triplet the vectors �wabc become

�wabc = mambmc�

Mo

(�rab + �rbc + �rca)

and they do indeed vanish due to the triangle condition

�rab + �rbc + �rca = 0. (32)

In the case of three bodies this configuration is known in celestial mechanics as the
Lagrangian triangular configuration [8]. It is the simplest non-collinear central configuration,
and is discussed in detail in the next section, culminating in the computation of the integral
vector �A corresponding to this configuration.

The foregoing results together with those of the previous section suggest that �W vanishes
for central configurations. We now show, for a 3-body system, that these are the only cases of
integrability.

Let us write equation (20) in differential form for a 3-body system:

d �W = 1

Mo

[(�r12 · �w) d�r3 + (�r23 · �w) d�r1 + (�r31 · �w) d�r2

+ (�r12 · d�r3 + �r23 · d�r1 + �r31 · d�r2) �w] = 0, (33)

with �w = �w123. It is convenient to express the particles’ coordinates in terms of Jacobi
variables �y1 and �y2:

�r1 = m2 �y1

M2
+

m3 �y2

Mo

, �r2 = m3 �y2

Mo

− m1 �y1

M2
, �r3 = −M2 �y2

Mo

,

�r12 = �y1, �r23 = �y2 − m1 �y1

M2
, �r13 = m2 �y1

M2
+ �y2, (34)

with M2 = m1 + m2, and we obtain from equation (33)

d �W = 1

Mo

[( �y2 · �w) d �y1 − ( �y1 · �w) d �y2 + ( �y2 · d �y1 − �y1 · d �y2) �w]

= 1

Mo

d[( �y2 · �w) �y1 − ( �y1 · �w) �y2]

+
1

Mo

[( �y2 · d �y1 − �y1 · d �y2) �w + d( �y1 · �w) �y2 − d( �y2 · �w) �y1]. (35)

Integrability of equation (35) implies that the last row there must vanish, so that

( �y2 · d �y1 − �y1 · d �y2) �w = d( �y2 · �w) �y1 − d( �y1 · �w) �y2. (36)

�w is a linear combination of �y1 and �y2, which we write as �w = w1 �y1 + w2 �y2. Then, due to
the independence of �y1 and �y2, we obtain from equation (36) two scalar conditions:

( �y1 × �y2)
2 dw1 = 2( �y1 · �y2) �w · d �y2 − 2 �y2

2 �w · d �y1

= ( �y1 · �y2)w2 d �y2
2 − �y2

2w1 d �y2
1 + 2( �y1 · �y2)w1 �y1 · d �y2 − 2 �y2

2w2 �y2 · d �y1 (37)

( �y1 × �y2)
2 dw2 = 2( �y1 · �y2) �w · d �y1 − 2 �y2

1 �w · d �y2

= ( �y1 · �y2)w1 d �y2
1 − �y2

1w2 d �y2
2 + 2( �y1 · �y2)w2 �y2 · d �y1 − 2 �y2

1w1 �y1 · d �y2. (38)

8
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In planar configurations �y1 and �y2 are linearly independent and �y1 × �y2 �= 0. Since w1

and w2 are both scalar functions of �y1 and �y2 via the scalar products ( �y1 · �y2), �y2
1 and �y2

2, it
then follows that the coefficients of �y2 · d �y1 and �y1 · d �y2 must be equal, so that

w1 �y2
1 + w2( �y1 · �y2) = �w · �y1 = 0 = w1 ( �y1 · �y2) + w2 �y2

2 = �w · �y2 = 0 (39)

and the only possible solution is when �w = 0. In collinear configurations, we simply use the
one-dimensional notation y1 and y2 instead of the vectors and obtain, say from equation (37),

y1y2w dy2 − y2
2w dy1 = y2w(y1 dy2 − y2 dy1) = 0, (40)

with a similar relation from equation (38). Thus, either w = 0 or y1 and y2 maintain the
constant ratio y1/y2, verifying that the configurations discussed above are indeed the only
ones for which �W is integrable in 3-body systems.

The vanishing of �W and the consequent integrability of �A for the general collinear
configurations or triangular 3-body central configurations strongly suggest that this is the case
for all central configurations for all N. The verification of this conjecture is still open.

6. Triangular central configurations

Let us consider in the following the central triangular configurations, as another example for
non-trivial configurations for which �A is an integral of the motion. Appreciating that the
general reader is not familiar with these configurations, let us start with a review of their
properties in a way that is also appropriate for our purposes. From the single particle equation
of motion (8), we obtain the equation of motion for the relative coordinates

mamb

d�vab

dt
= Mo

κab

r3
ab

�rab −
∑
c �=a,b

�wabc. (41)

Assuming that all the �wabc vanish, the equations of motion (41) of the various relative
coordinates separate and become independent:

d�vab

dt
= Moκab

mamb

�rab

r3
ab

. (42)

These are Kepler/Coulomb equations of motion, with the constants that are associated with
the solution of each equation:

ηab = 1

2
v2

ab +
Moκab

mamb

1

rab

(43)

�λab = �rab × �vab (44)

�Kab = �vab × (�rab × �vab) +
Moκab

mamb

�rab

rab

(45)

with the well-known relations between these constants:

K2
ab = 2ηabλ

2
ab +

(
Moκab

mamb

)2

. (46)

The solutions of equation (42) are conic sections with eccentricity

ε = mamb| �Kab|
Mo|κab| =

√
1 + 2ηabλ

2
ab

(
mamb

Moκab

)2

(47)

and �Kab is the constant Runge–Lenz vector associated with these solutions.

9
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Any three particles a, b, c form a triangle. The vanishing �wabc condition now implies
κab

mambr
3
ab

�rab +
κbc

mamcr
3
bc

�rbc +
κac

mbmcr3
ac

�rca = 0. (48)

The three vectors �rab, �rbc, �rca may be either collinear or not, so let us consider the triangular
case. Equation (48), together with the triangle condition (32), then implies the condition

κab

mambr
3
ab

= κbc

mamcr
3
bc

= κac

mbmcr3
ac

. (49)

In the case of gravitational systems
κab

mamb

= −G

so that all the relative distances must be equal at all times, rab(t) = r(t)∀a, b, and the particles
form an equilateral triangle. In the case of electromagnetic systems all the κab must have the
same sign, hence all the charges having the same sign and all the κab strictly positive. All the
relative distances scale to a common temporal dependence:

rab(t) =
(

Mo|κab|
mamb

) 1
3

a(t) (50)

(we keep the absolute sign for |κab| so that equation (50) and the following discussion will be
appropriate for both electromagnetic and gravitational systems). From equations (43)–(45)
it follows that ηab and �λab scale as

(
Mo|κab|
mamb

)2/3
and �Kab scales as

(
Mo|κab|
mamb

)
. Thus, there are

constants η, λ and K such that for all a, b

ηab =
(

Mo|κab|
mamb

) 2
3

η (51)

|�λab| =
(

Mo|κab|
mamb

) 2
3

λ (52)

| �Kab| =
(

Mo|κab|
mamb

)
K. (53)

From equation (47) it follows that

ε = K =
√

2ηλ2 + 1 (54)

and η is determined by the total internal energy:

E =
∑
(a,b)

mamb

Mo

ηab =
[ ∑

(a,b)

mamb

Mo

(
Mo|κab|
mamb

) 2
3
]
η. (55)

The vectors �rab and �vab are confined to the plane perpendicular to �λab. This plane is
spanned by �Kab and �λab × �Kab, and it may be shown that the triangle condition (32) together
with the corresponding one for the velocities

�vab + �vbc + �vca = 0 (56)

is embodied in the following relations:(
Mo|κab|
mamb

)− 2
3 �Kab +

(
Mo |κbc|
mbmc

)− 2
3 �Kbc +

(
Mo |κac|
mamc

)− 2
3 �Kca = 0

(
Mo|κab|
mamb

)− 4
3 �λab × �Kab +

(
Mo |κbc|
mbmc

)− 4
3 �λbc × �Kbc +

(
Mo |κac|
mamc

)− 4
3 �λca × �Kca = 0.

(57)
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Then it can be shown that the two conditions in equation (57), together with the orthogonality
relations �λab · �Kab = 0 for all a, b, can co-exist only if all the vectors �λab are parallel. Thus,
all the motion is confined to the plane formed by the three particles, known as the ‘invariant
plane’ in celestial mechanics [8]. If there are more than three particles, then all the triangles
formed by all possible triplets should all be in the same plane, but that would be impossible to
reconcile with the relations required by equation (50). Consequently, these triangular central
configurations are possible only in 3-body systems (4-body solutions are possible only if all
�λab = 0, which are tetrahedral configurations uniformly contracting or expanding, but not
rotating). Then, in any such system, there exists a vector �λ such that

�λab =
(

Mo|κab|
mamb

) 2
3 �λ, (ab) = (12), (23), (31) (58)

so that the total internal angular momentum is

�� =
∑
(a,b)

mamb

Mo

�λab =
⎡
⎣∑

(a,b)

mamb

Mo

(
Mo|κab|
mamb

) 2
3

⎤
⎦ �λ. (59)

Finally, for the computation of �A it suffices, due to its constancy, to be done at one
particular point. The most convenient one is the point of the maximal approach (minimal
distance) of the particles. Since all the �rab follow, by equation (50), the same temporal pattern,
let t = 0 denote the time of the minimal distances between all the particles. At the extrema of
the orbit �rab · �vab = 0, and the minimum of the distance function a(t) is

amin = ε ± 1

2η
= λ2

ε ∓ 1
, (60)

where ± = sign (κab). Then the relative vectors and the relative velocities are

�rab(0) =
(

Mo|κab|
mamb

)− 2
3 λ2 ± amin

ε2
�Kab =

(
Mo|κab|
mamb

)− 2
3 amin

ε
�Kab

�vab(0) =
(

Mo|κab|
mamb

)− 2
3
(

2η ∓ 1

amin

) �λ × �Kab

ε2
=

(
Mo|κab|
mamb

)− 2
3 �λ × �Kab

εamin
.

(61)

These relations may be combined, using equation (60), to yield

�vab(0) × �λ = λ2

a2
min

�rab(0) = ε ∓ 1

amin
�rab(0).

Then, using equation (18) and the corresponding identity for the velocities

�va =
∑

b

mb�vab

Mo

, (62)

a similar relation is obtained for the single particles:

�va(0) × �λ = λ2

a2
min

�ra(0) = ε ∓ 1

amin
�ra(0).

For the computation of �A it is convenient to transform the first sum in equation (13) into
summation over pairs of particles. Using identities (18) and (62) we obtain

�A ≡
∑
(a,b)

[
mamb

Mo

(�va + �vb) × (�rab × �vab) +
κab

rab

(�ra + �rb)

]
. (63)
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Since �A refers to non-relativistic dynamics, �Ro may be replaced in the computation of �ra by
its non-relativistic limit �Xo. Thus we finally obtain for the vector �A:

�A =
∑
(a,b)

(
Mo|κab|
mamb

) 2
3 mamb

Mo

{
[�va(0) + �vb(0)] × �λ ± 1

amin
[�ra(0) + �rb(0)]

}

=
∑
(a,b)

(
Mo|κab|
mamb

) 2
3 mamb

Mo

(
ε ∓ 1

amin
± 1

amin

)
[�ra(0) + �rb(0)]

= ε

Moamin

∑
(a,b)

(
Mo|κab|
mamb

) 2
3

mamb [�ra(0) + �rb(0)]. (64)

In the gravitational case, or for electromagnetic systems with all the particles having identical
charge-to-mass ratios (ea/ma), equation (64) may be further simplified using the identity∑

(a,b)

mamb(�ra + �rb) = −
∑

a

m2
a�ra (65)

and we obtain

�A = − ε

Moamin

(
Mo |κ12|
m1m2

) 2
3 ∑

a

m2
a�ra(0). (66)

7. Concluding remarks

A new constant of motion—the vector �A defined in equation (13)—was found in many-body
electrical or gravitational systems. For central configurations, it reduces to an integral of
motion—an algebraically simple vector observable—as given by equation (17). That it is
new, not just a function of the classical integrals (energy, linear and angular momentum), is
verified from the fact that it is of the Runge–Lenz type.

Christian Marchal, in his book The Three-Body Problem [8] which is one of the relatively
recent publications on the subject, reviews briefly the unsuccessful history of searching for
integrals of motion other than the global ones in many-body gravitational systems. He
concludes with the words (p 25):

Thus the conjectural absence of new non-classical integrals means absence of integrals that
would be

(A) independent of time,
(B) continuous in terms of the present state,
(C) non-transitory,
(D) isolating,
(E) useful even for bounded and oscillatory orbits.

It is evident that our �A stands in contrast to this statement.
It has been verified that �A is indeed an integral of motion for collinear central

configurations for arbitrary number of particles N, and for the central triangular configurations
of three bodies. It has also been shown that for three bodies these are the only configurations
for which �A is an integral. It still remains to be verified that (as may be conjectured from the
foregoing results) �A is an integral also for non-collinear central configurations for more than

12



J. Phys. A: Math. Theor. 42 (2009) 375210 U Ben-Ya’acov

three bodies. It also remains to see whether, and for what configurations, �A is an integral in
restricted 3-body systems.

In 2-body systems, knowledge of the Runge–Lenz vector amounts to having a full solution
for the configuration of the system. In such systems, the internal dynamics is governed by the
symmetry generated together by the internal angular momentum and the Runge–Lenz vector.
Another direction for inquiry is therefore what information is contained in �A regarding the
configuration, and what are the symmetry properties associated with it.

The only non-trivial explicit solutions which are so far known for gravitational many-body
systems are central configurations [8, 9], especially collinear ones. Non-collinear solutions
are apparently known only for three and four bodies. Consequently, it is suggested that the
vector �A may be of much help in the analysis of such configurations in many-body systems,
and also in the analysis of more general systems.
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